Hybrid semi-Lagrangian finite element-finite difference methods for the Vlasov equation
نویسندگان
چکیده
In this paper, we propose a new conservative hybrid finite element-finite difference method for the Vlasov equation. The proposed methodology uses Strang splitting to decouple the nonlinear high dimensional Vlasov equation into two lower dimensional equations, which describe spatial advection and velocity acceleration/deceleration processes respectively. We then propose to use a semi-Lagrangian (SL) discontinuous Galerkin (DG) scheme (or Eulerian Runge-Kutta (RK) DG scheme with local time stepping) for spatial advection, and use a SL finite difference WENO for velocity acceleration/deceleration. Such hybrid method takes the advantage of DG scheme in its compactness and its ability in handling complicated spatial geometry; while takes the advantage of the WENO scheme in its robustness in resolving filamentation solution structures of the Vlasov equation. The proposed highly accurate methodology enjoys great computational efficiency, as it allows one to use relatively coarse phase space mesh due to the high order nature of the scheme. At the same time, the time step can be taken to be extra large in the SL framework. The quality of the proposed method is demonstrated via basic test problems, such as linear advection and rigid body rotation, and classical plasma problems, such as Landau damping and the two stream instability. Although we only tested 1D1V examples, the proposed method has the potential to be extended to problems with high spatial dimensions and complicated geometry. This constitutes our future research work.
منابع مشابه
Finite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملSolving a system of 2D Burgers' equations using Semi-Lagrangian finite difference schemes
In this paper, we aim to generalize semi-Lagrangian finite difference schemes for a system of two-dimensional (2D) Burgers' equations. Our scheme is not limited by the Courant-Friedrichs-Lewy (CFL) condition and therefore we can apply larger step size for the time variable. Proposed schemes can be implemented in parallel very well and in fact, it is a local one-dimensional (LOD) scheme which o...
متن کاملFinite Element Solutions of Cantilever and Fixed Actuator Beams Using Augmented Lagrangian Methods
In this paper we develop a numerical procedure using finite element and augmented Lagrangian meth-ods that simulates electro-mechanical pull-in states of both cantilever and fixed beams in microelectromechanical systems (MEMS) switches. We devise the augmented Lagrangian methods for the well-known Euler-Bernoulli beam equation which also takes into consideration of the fringing effect of electr...
متن کاملConservative semi-Lagrangian finite difference WENO formulations with applications to the Vlasov equation
Abstract In this paper, we propose a new conservative semi-Lagrangian (SL) finite difference (FD) WENO scheme for linear advection equations, which can serve as a base scheme for the Vlasov equation by Strang splitting [4]. The reconstruction procedure in the proposed SL FD scheme is the same as the one used in the SL finite volume (FV) WENO scheme [3]. However, instead of inputting cell averag...
متن کاملA Block-Based Parallel Adaptive Scheme for Solving the 4D Vlasov Equation
We present a parallel algorithm for solving the 4D Vlasov equation. Our algorithm is designed for distributed memory architectures. It uses an adaptive numerical method which reduces computational cost. This adaptive method is a semi-Lagrangian scheme based on hierarchical finite elements. It involves a local interpolation operator. Our algorithm handles both irregular data dependencies and the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 234 شماره
صفحات -
تاریخ انتشار 2013